天气预报15天查询> 技术> 一元二次方程的解法

一元二次方程的解法

更新时间: 2023-09-18 14:11:54     

(1)一元二次方程的解法

1、因式分解法:①因式分解法原理是利用平方和公式(a±b)2=a2±2ab+b2或平方差公式(a+b)(a-b)=a2-b2,把公式倒过来用就是了。②例如x2+4=0这个可以利用平方差公式,把4看成22,就是x2+22 => (x-2)(x+2)再分别解出就可以了。③0乘以任何数都得0,(x-2)要是0那么x=2,(x+2)等于0那么x=-2,这样就可以了。

2、配方法:①配方法不算很难但非常重要,配方法可以求二次函数顶点和坐标,也可以解一元二次方程。第一步,先化为ax2+bx=c的形式。②第二步,取一次项系数b一半的平方,再方程。b=8,先取一半,就是4,然后平方就是16,两边同时加上,就是x2+8x+16=2+16。③变一下形,平方和公式逆用,16看成42,就是(x+4)2=18。④然后直接开平方,x+4=±√18,再移项化简,x=±3√2-4。⑤然后再把解分别写出来就完成了

3、公式法:公式法比较简单,2x2-x=6先化为一般形式ax2+bx+c=0的形式,然后找出a,b,c,再直接套用公式(-b±√b2-4ac)÷2a,Δ=b2-4ac>0有两个不相等的实数根,Δ=b2-4ac=0有两个相等的实数根,解得x1=2 x2=-2/3

(2)二元二次方程的解法

1、代入法:由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

2、因式分解法:在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

3、配方法:将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

4、韦达定理法:通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

5、消常数项法:当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

(3)二次方程求根公式

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

(4)二元二次方程解法

1、二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。

2、二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。

3、二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程。其一般式为ax2+bxy+cy2+dx+ey+f=0。(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零)。

相关推荐
友情链接
服务器推荐

如有意见、反馈、侵权或投诉等情况,请联系:

go#404.life(#换为@)

我们将会在48小时内给与处理!

版权所有 Copyright ? 2009-2020 7tqx.com

鄂ICP备2025107276号-1